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Abstract 
A three-dimensional model of intense bunched beams is 

developed for cylindrical and corrugated conducting 
pipes. Updated comparisons between the current limits 
derived from this model and experimental data from PPM 
focusing klystrons are presented. An electrostatic Green’s 
function is formulated for azimuthally symmetric slow-
wave structures. Analytical and numerical results are 
presented for the potential of a periodic bunched pencil 
beam in a small-rippled waveguide approximation. 

INTRODUCTION 
The modeling of intense charged-particle beams is an 

important subject in beam physics [1,2] and to the 
development of rf accelerators and the high-power 
microwave (HPM) sources [3] driving them.  

Recent analytic and semi-analytic Green’s function 
analyses to address these issues have resulted in 
confinement conditions for bunched pencil beams in 
round cylindrical pipes [4-7]. The model predicts beam 
losses, which have been measured in a number of periodic 
permanent magnet (PPM) focusing klystrons at SLAC and 
KEK [8-12].  

In this paper, we present updated comparisons between 
theory [4-7] and the PPM klystron experiments at SLAC 
[8,9,11] and KEK [10,12], and describe our initial efforts 
to generalize the previous model [4-7] to slow-wave 
structures. In particular, we derive an electrostatic Green’s 
function for an azimuthally symmetric cylindrical 
conductor with small-amplitude axial variations of its 
radius. Self-consistent electrostatic potentials are 
computed for a periodic bunched beam propagating off-
axis in the pipe. 

UPDATED COMPARISONS BETWEEN 
THEORY AND PPM KLYSTRON DATA 
The theoretical results, based on a three-dimensional 

bunched beam model for a perfectly conducting circular 
pipe with a constant radius, predict a current limit for 
PPM focusing klystrons being developed for TeV linear 
collider applications. For ,2/2 <≡ caf bbβγπα  the 

limiting current bI  is approximately given by [4-7] 
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where a  is the beam tunnel radius, f  is the operating 

frequency of the klystron, cbβ  is the dc beam velocity, 

bγ  is the relativistic mass factor for the dc beam, rmsc ,ω  is 

the rms cyclotron frequency associated with the PPM 
focusing field, and bbAI βγ×= kA17  is the Alfven 

current. 
Figure 1 and Table 1 show updated comparisons 

between the predicted (solid line) and the experimental 
data points. From Table 1 and Fig. 1, it is evident that 
both the SLAC 50 MW X-Band XL-PPM klystron [8,9] 
and Toshiba/KEK 50 MW C-Band PPM klystron [10] 
operate below the current limit. This agrees with minimal 
beam losses observed in both experiments. On the other 
hand, the SLAC 75 MW X-Band XP-1 [8,9] and XP-3 
[11] PPM klystrons and the BINP/KEK 75 MW X-Band 
PPM-1 klystron [12] all operate at or above the current 
limit, and observe significant beam losses. 

ELECTROSTATIC GREEN’S FUNCTION 
IN A SLOW-WAVE STRUCTURE  

As an initial effort to generalize the previous model [4-
7] to slow-wave structures, we pose the problem of 
determining the electrostatic Green function in an 
azimuthally symmetric slow-wave structure. 

Employing cylindrical coordinates ( )zr ,,φ , the 

conducting surface of the waveguide is specified by 
( )zar = , where the pipe radius, a , is a function of the 

axial coordinate. The Green’s function is then determined 
by the solution of 
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Figure 1: Comparison between theoretical current limit 
and experimental data for PPM klystrons. ___________________________________________  
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Table 1: Experimental parameters and theoretical current 
limits for PPM klystrons. 

 PARAMETER 
50 MW XL-

PPM (SLAC) 

75 MW XP-1 

(SLAC) 

75 MW XP-3 

(SLAC) 

50 MW 

(Toshiba/KEK) 

75 MW  PPM-1  

(BINP/KEK) 

f (GHz) 11.4 11.4 11.4 5.7 11.4 

bI  (A) 190 257 257 317 266 

bγ  

Brms (T) 

1.83 

0.20 

1.96 

0.16 

1.96 

0.18 

1.69 

0.14 

1.94 

0.17 

a (cm) 0.48 0.54 0.48 0.90 0.55 

α  0.75 0.77 0.68 0.79 0.79 

expArms,c

b

Ia

Ic
22

28

ω
 0.19 0.28 0.29 0.20 0.25 

critArms,c

b

Ia

Ic
22

28

ω
 0.238 0.244 0.216 0.251 0.251 

Beam Power     

Loss 
0.8% 

significant but 

not measured 

significant but 

not measured 

small but        

not measured 
30% 

  
This is reduced to a boundary value problem for 

Laplace’s equation by separating the singular (free-space) 
and regular components of the Green’s function and 

writing ( ) ( )xxxxxx ′+′−=′ −
;;

1

RGG . This leaves 
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where the boundary function is defined by 

( ) ( ) 1
,

−′−=−≡ xx arzf φ . 

The regular part of the Green’s function may be 
expanded in the cylindrical coordinate eigenfunctions of 
the Laplacian as 
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∞

∞−

∞

−∞=
=

ν
λνν

νφλ λλ ,ArIeedG izi
R  (4) 

where the amplitudes λνA  are determined by the 

boundary equation 
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The standard procedure for determining the amplitudes 

λνA  involves taking the Fourier transform of Eq. (5) and 

utilizing the orthogonality properties of the basis 
functions to isolate the amplitudes. This yields 
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where the Fourier transform of the boundary function is 
defined as 
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Note that for a constant ( )za  in Eq. (6), the z  integral 

reduces to a delta function, yielding the result for a 

straight cylinder [4]: ( )aIAf λνλνλν =
~

. For an arbitrary 

axial profile, Eq. (5) cannot be analytically inverted to 
obtain the amplitudes λνA . 

SMALL-RIPPLE APPROXIMATION  
The system does present an approximate analytic 

solution if the axially-varying conductor radius is 
approximately equal to its average value. We thus take the 
small ripple approximation, assuming that 

( ) ( )zaaza 10 += , where ( ) 01 aza << . Employing this 

approximation to Taylor expand the Bessel function 
appearing in Eq. (5) to first order in 01 / aa  permits 

writing the transformed boundary function as 
10 ~~~
νλνλνλ ′′′ +≅ fff , where the result for the straight 

cylinder of constant radius 0a  is represented by 

( )0
0~

aIAf λννλνλ ′= ′′ , and the first order correction due to 

the axially-varying wall radius is represented by 
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with the introduction of the Fourier transform of the wall 

ripple, defined by ( ) ( )∫
∞

∞−

−= dzezaa ziκ

π
κ 11 2

1~ .  

We shall henceforth in this paper assume a sinusoidal 
wall profile (see Fig. 2) given by ( ) ( )!/2cos01 zaza πε= , 

with the understanding that an arbitrary (small-amplitude) 
wall profile may be constructed through an appropriate 
Fourier superposition of above modes. With this choice, 
the transformed boundary function becomes 
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It is consistent with the small ripple approximation to 
use a first-order in ε  perturbation expansion to invert Eq. 

(9) for the amplitudes λνA . Writing 10
λνλνλν εAAA +≅  

and separately equating the coefficients of each order of 
ε  in Eq. (9) yields 
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Figure 2: Bunched beam in a rippled-wall waveguide. 
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Figure 3: Equipotential curves for a bunched beam in a straight (left) and corrugated (right) cylinder. 

 

where ( )[ ] 1
0

0 ~ −= λνλνλν aIfA . 

All that remains is to determine the transformed 

boundary function, λνf
~

. Employing a well-known 

Fourier-Bessel expansion [13] for the R/1  potential, 
the boundary function may be written as 

 
( ) ( )( )

( ) ( ) ( ) ( )( ) ,

,

1

1

dkzkaKrkIee

zarzf

n
nn

zzikin∑ ∫
∞

−∞=

∞

∞−

′−′−

−

′−=

′−=−=

φφ
π

φ xx
 (11) 

where we’ve assumed ( )zar <′ . Taking the Fourier 

transform as per Eq. (7) and making use of the small 
ripple approximation to expand the Bessel function 
yields 

( ) ( )
( ) ( )( ) ( )( )
( ) ( )( ) ( )( )

.
~

002

002

0

1



















+′+++

−′−−+

′

−=
′−

′′−′−

apKrpIpae

apKrpIpae

aKrI

eef
zip

zipizi

λλλ

λλλ
λλ

νν
ε

νν
ε

νν
φνλ

πλν
 (12) 

Combined with Eqs. (10) and (4), this result determines 
the electrostatic Green’s function for an azimuthally 
symmetric pipe with small-amplitude axial variations 
in its radius, accurate to first order in ε . 

Given the Green’s function, the electrostatic potential 
may be computed for an arbitrary charge distribution. 
For purposes of comparison, it is useful to consider the 
bunched beam charge distribution of [4], 

 ( ) ( ) ( ) ( ).1
,, ∑

∞
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n

nLzzrr
r

zr δφφδδφρ  (13) 

This distribution (depicted in Fig. 2) represents a 
periodic bunched beam with bunch spacing L , 
displaced from the axis by a distance r ′ , and with one 
bunch offset from the 0=z  plane by a distance z ′ . 
Integrating the Green’s function over this distribution 

yields ( ) ( ) ( )xxx 10 Φ+Φ=Φ ε , where the first term is 

the straight cylinder potential of [4], 
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and the second term gives the correction due to a 
sinusoidal wall ripple, 
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The quantities introduced above are defined as 
La /2 00 πα ≡ , Lrr /2ˆ π≡ , Lrr /2ˆ ′≡′ π , Lzz /2ˆ π≡ , 

Lzz /2ˆ ′≡′ π , !/ˆ Lp ≡ , ( )rrr ′≡< ˆ,ˆminˆ , ( )rrr ′≡< ˆ,ˆmaxˆ , 

and ( ) ( )!/2cos01 zaza πε= . 

Figure 3 shows equipotential curves in the plane of 
the charge for a bunched beam in both a straight and 
corrugated cylinder. Relevant parameters are 20 =α , 

5.0ˆ =′r , 0ˆ =′z , 1ˆ =p , and 05.0=ε . The black 

region (corresponding to the zero potential surface) 
conforms to the straight and sinusoidally rippled 
cylindrical walls, respectively. 
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